

AXIALLY LOADED PINNED END POST FOR FLOOR LOADING										
Temperature Adjustment Factors For Deflection										
Temperature					90°F	100°F	110°E	120°E		
Fac			Factor	1.334	1.000	0.844	0.712	0.601		
Temperature Adjusted Compressive Modulus Of Elasticity (90°F) = 148050 psi										
Temperature Adjusted Compressive Strength (90°F) =										
Temperature Adjusted Allowable Compressive Stress (90°F) = Axial								xial Load		
									On Column	
Size:		4x4 (Nom.)	4x6 (Nom.)	6x6 (Nom.)		6x8 (Act.)		8x8 (I	Nom.)	10x10 (Act.)
Thickness (in)		3.5	3.5	5.5		6.0		7.5		10.0
Depth (in)		3.5	5.5	5.5		8.0		7.5		10.0
Agross (in ²)		12.25	19.25	30.25		48.00		56.25		100.00
A[t=1.75] (in ²)		12.25	19.25	26.25		36.75		40.25		57.75
Allowable Uniform Load (Lbs. / Ft.)										
Span (Ft.)	4	9446	14844	20241		28338 31		037	44531	
	5	7557	11875	16193		22670		24829		35625
	6	6297	9896	13494		18892		20691		29687
	7	L/r>50	L/r>50	11566		16193		17735		25446
	8			10121		14169		15518		22265
	9			8996		12595		13794		19791
	10			8096		11335		12415		17812
	11			L/r>50		10305		11286		16193
	12					L/r>50		103	346	14844
	13							95	50	13702
	14					8		88	68	12723
	15					82		82	76	11875
	16					L/r		>50	11133	
	17									10478
	18									9896

TABLE NOTES

1. Table provides load values that are temperature-adjusted to 90°F. Because elastic shortening of the post controls design, 90°F values are considered to be conservative. However, to determine higher temperature allowable loads, multiply the listed values by the adjustment factors listed.

2. Allowable compressive stress is the temperature-adjusted compressive stress divided by a factor of safety of 1.50. However, this stress will generally not influence design.

3. Although TRIMAX Lumber is manufactured as a solid element, the density of the cross-section decreases toward the center. The above calculations assume the maximum effective dense skin thickness is 1.75"

The allowable loads in the above table are controlled by deflection criteria. Elastic shortening of the post (d=PL/AE) is limited to 0.25" at 90°F. To determine loads of other d's, multiply table by desired value divided by 0.25. The effective skin thickness for all d calculations is 1.75".
Load duration factor (Cd) for the table is 1.0 and is appropriate for typical floor loading. Cd is an adjustment factor to limit long-term creep. The adjustment factor for permanent load (30 years) is 0.91.

